ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3β/β-catenin signaling pathway

ST6Gal-I 过表达通过 PI3K/Akt/GSK-3β/β-catenin 信号通路促进前列腺癌进展

阅读:6
作者:Anwen Wei, Bo Fan, Yujie Zhao, Han Zhang, Liping Wang, Xiao Yu, Qingmin Yuan, Deyong Yang, Shujing Wang

Abstract

ST6Gal-I sialyltransferase adds α2,6-linked sialic acids to the terminal ends of glycan chains of glycoproteins and glycolipids. ST6Gal-I is reportedly upregulated in many cancers, including hepatocellular carcinoma, ovarian cancer and breast cancer. However, the expression and function of ST6Gal-I in prostate cancer (PCa) and the mechanism underlying this function remain largely unknown. In this study, we observed that ST6Gal-I expression was upregulated in human PCa tissues compared to non-malignant prostate tissues. High ST6Gal-I expression was positively correlated with Gleason scores, seminal vesicle involvement and poor survival in patients with PCa. ST6Gal-I knockdown in aggressive prostate cancer PC-3 and DU145 cells significantly inhibited the proliferation, growth, migration and invasion capabilities of these cells. ST6Gal-I knockdown decreased the levels of several PI3K/Akt/GSK-3β/ β-catenin pathway components, such as p-PI3K, (Ser473)p-Akt, (Ser9)p-GSK-3β and β-catenin. Furthermore, targeting this pathway with a PI3K inhibitor or Akt RNA interference decreased p-Akt, p-GSK-3β and β-catenin expression, resulting in decreased PC-3 and DU145 proliferation, migration and invasion. Taken together, these results indicate that ST6Gal-I plays a critical role in cell proliferation and invasion via the PI3K/Akt/GSK-3β/β-catenin signaling pathway during PCa progression and that it might be a promising target for PCa prognosis determination and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。