Synthetic Efforts to Investigate the Effect of Planarizing the Triarylamine Geometry in Dyes for Dye-Sensitized Solar Cells

综合研究三芳胺几何结构平面化对染料敏化太阳能电池染料的影响

阅读:4
作者:David Moe Almenningen, Veslemøy Minge Engh, Eivind Andreas Strømsodd, Henrik Erring Hansen, Audun Formo Buene, Bård Helge Hoff, Odd Reidar Gautun

Abstract

The geometry of a dye for dye-sensitized solar cells (DSSCs) has a major impact on its optical and electronic properties. The dye structure also dictates the packing properties and how well the dye insulates the metal-oxide surface from oxidants in the electrolyte. The aim of this work is to investigate the effect of planarizing the geometry of the common triarylamine donor, frequently used in dyes for DSSC. Five novel dyes were designed and prepared; two employ conventional triarylamine donors with thiophene and furan π-spacers, two dyes have had their donors planarized through one sulfur bridge (making two distinct phenothiazine motifs), and the final dye has been planarized by forming a double phenoxazine. The synthesis of these model dyes proved to be quite challenging, and each required specially designed total syntheses. We demonstrate that the planarization of the triarylamine donor can have different effects. When planarization was achieved by a 3,7-phenothiazine and double phenoxazine structures, improved absorption properties were noted, and a panchromatic absorption was achieved by the latter. However, an incorrect linking of donor and acceptor moieties has the opposite effect. Further, electrochemical impedance spectroscopy revealed clear differences in charge recombination depending on the structure of the dye. A drawback of planarized dyes in relation to DSSC is their low oxidation potentials. The best photovoltaic performance was achieved by 3,7-phenothazine with furan as a π-spacer, which produces a power conversion efficiency of 5.2% (J sc = 8.8 mA cm-2, V oc = 838 mV, FF = 0.70).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。