Identification of Active Components for Sports Supplements: Machine Learning-Driven Classification and Cell-Based Validation

运动补品活性成分的鉴定:机器学习驱动的分类和基于细胞的验证

阅读:5
作者:Xiaoning Ji, Qiuyun Li, Zhaoping Liu, Weiliang Wu, Chaozheng Zhang, Haixia Sui, Min Chen

Abstract

The identification of active components is critical for the development of sports supplements. However, high-throughput screening of active components remains a challenge. This study sought to construct prediction models to screen active components from herbal medicines via machine learning and validate the screening by using cell-based assays. The six constructed models had an accuracy of >0.88. Twelve randomly selected active components from the screening were tested for their active potency on C2C12 cells, and 11 components induced a significant increase in myotube diameters and protein synthesis. The effect and mechanism of luteolin among the 11 active components as potential sports supplements were then investigated by using immunofluorescence staining and high-content imaging analysis. It showed that luteolin increased the skeletal muscle performance via the activation of PGC-1α and MAPK signaling pathways. Thus, high-throughput prediction models can be effectively used to screen active components as sports supplements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。