Design and discovery of a high affinity, selective and β-arrestin biased 5-HT7 Receptor Agonist

设计和发现高亲和力、选择性和 β-arrestin 偏向的 5-HT7 受体激动剂

阅读:6
作者:Edem K Onyameh, Edward Ofori, Barbara A Bricker, Uma M Gonela, Suresh V K Eyunni, Hye J Kang, Chandrashekar Voshavar, Seth Y Ablordeppey

Abstract

Compound 1c, 5-chloro-2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)-2,3-dihydro-1H-inden-1-one was previously reported from our laboratory showing high affinity binding to the 5-HT7 receptor (Ki = 0.5 nM). However, compound 1c racemizes readily upon enantiomeric separation. To prevent racemization, we have redesigned and synthesized methyl and carboxyethyl analogs, compounds 2 and 3 respectively, whose binding affinities were similar to those of compound 1c. Compounds 2 and 3 cannot undergo racemization since tautomerism was no longer possible and thus, compound 2 was selected for enantiomeric separation and further evaluation. Upon enantiomeric separation, the levorotatory enantiomer, (-)2 or 2a demonstrated a higher affinity (Ki = 1.2 nM) than the (+)2 or 2b enantiomer (Ki = 93 nM) and a β-arrestin biased functional selectivity for the 5-HT7 receptor. Although 2a showed about 8 times less activity than 5-HT in the Gs pathway, it showed over 31 times higher activity than 5-HT in the β-arrestin pathway. This constitutes a significant β-arrestin pathway preference and shows 2a to be more potent and more efficacious than the recently published β-arrestin biased 3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepine, the N-debenzylated analog of JNJ18038683 (Compound 7).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。