Fetal Zone Steroids and Estrogen Show Sex Specific Effects on Oligodendrocyte Precursor Cells in Response to Oxidative Damage

胎儿区类固醇和雌激素对少突胶质细胞前体细胞在氧化损伤反应中表现出性别特异性影响

阅读:6
作者:Donna Elizabeth Sunny, Elke Hammer, Till Ittermann, Elisabeth Luise Krüger, Stephanie Hübner, Michaela Friederike Hartmann, Stefan Alexander Wudy, Uwe Völker, Matthias Heckmann

Abstract

Oxygen causes white matter damage in preterm infants and male sex is a major risk factor for poor neurological outcome, which speculates the role of steroid hormones in sex-based differences. Preterm birth is accompanied by a drop in 17β-estradiol (E2) and progesterone along with increased levels of fetal zone steroids (FZS). We performed a sex-based analysis on the FZS concentration differences in urine samples collected from preterm and term infants. We show that, in preterm urine samples, the total concentration of FZS, and in particular the 16α-OH-DHEA concentration, is significantly higher in ill female infants as compared to males. Since we previously identified Nup133 as a novel target protein affected by hyperoxia, here we studied the effect of FZS, allopregnanolone (Allo) and E2 on differentiation and Nup133 signaling using mouse-derived primary oligodendrocyte progenitor cells (OPCs). We show that the steroids could reverse the effect of hyperoxia-mediated downregulation of Nup133 in cultured male OPCs. The addition of FZS and E2 protected cells from oxidative stress. However, E2, in presence of 16α-OH-DHEA, showed a negative effect on male cells. These results assert the importance of sex-based differences and their potential implications in preterm stress response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。