Succinate signaling attenuates high-fat diet-induced metabolic disturbance and intestinal barrier dysfunction

琥珀酸信号减轻高脂饮食引起的代谢紊乱和肠道屏障功能障碍

阅读:6
作者:Xuan Li, Guowen Huang, Yanan Zhang, Yuting Ren, Ruofan Zhang, Weiyun Zhu, Kaifan Yu

Abstract

Succinate is a vital signaling metabolite produced by the host and gut microbiota. Succinate has been shown to regulate host metabolic homeostasis and inhibit obesity-associated inflammation in macrophages by engaging its cognate receptor, SUCNR1. However, the contribution of the succinate-SUCNR1 axis to intestinal barrier dysfunction in obesity remains unclear. In the present study, we explored the effects of succinate-SUCNR1 signaling on high-fat diet (HFD)-induced intestinal barrier dysfunction. Using a SUCNR1-deficient mouse model under HFD feeding conditions, we identified the effects of succinate-SUCNR1 axis on obesity-associated intestinal barrier impairment. Our results showed that HFD administration decreased goblet cell numbers and mucus production, promoted intestinal pro-inflammatory responses, induced gut microbiota composition imbalance, increased intestinal permeability, and caused mucosal barrier dysfunction. Dietary succinate supplementation was sufficient to activate a type 2 immune response, trigger the differentiation of barrier-promoting goblet cells, suppress intestinal inflammation, restore HFD-induced mucosal barrier impairment and intestinal dysbiosis, and eventually exert anti-obesity effects. However, SUNNR1-deficient mice failed to improve the intestinal barrier function and metabolic phenotype in HFD mice. Our data indicate the protective role of the succinate-SUCNR1 axis in HFD-induced intestinal barrier dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。