An Adsorption Based Downstream Processing Approach for Penicillin V from a Penicillium chrysogenum BIONCL I22 Culture Filtrate

一种基于吸附的青霉菌 BIONCL I22 培养滤液中青霉素 V 的下游处理方法

阅读:10
作者:Bela H Mishal, Sancharini Das, Vaishnavi N Mahajan, Mahesh S Dharne, Rakesh S Joshi, Ashok P Giri

Abstract

Penicillin V (phenoxy methyl penicillin) is highly sought after among natural penicillins because of its exceptional acid stability and effectiveness against common skin and respiratory infections. Given its wide-ranging therapeutic uses, there is a need to establish a greener method for its maximum recovery to reduce the carbon footprint. Here, we have identified and validated optimized operational conditions for resin-based penicillin V recovery. It was observed that Amberlite XAD4 had the highest penicillin V hydrophobic adsorption capacity among the other screened resins. Kinetic and isothermal studies using linear and nonlinear regression analysis showed that the adsorption process well fitted with pseudo-second-order kinetics (R 2 = 0.9816) and the Freundlich adsorption isotherm model (R 2 = 0.9871). Adsorption equilibrium was attained within 4 h, while maximum adsorption was observed at 3 mg/mL penicillin V concentration. Furthermore, the optimized extraction protocol was compared with the conventional butyl acetate-based downstream processing. Under optimum conditions resin-based penicillin V recovery was 2-fold higher as compared to the solvent extraction method and the resin could be reused for over six cycles without compromising the yield. These findings signify substantial progress toward the development of an environmentally sustainable approach for penicillin V recovery and a potentially viable method for extractive fermentation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。