Synthesis and biological activity of 2-cyanoacrylamide derivatives tethered to imidazopyridine as TAK1 inhibitors

咪唑并吡啶结合的2-氰基丙烯酰胺衍生物作为TAK1抑制剂的合成及生物活性

阅读:6
作者:Seok Jong Kang, Jung Wuk Lee, Jiho Song, Jiwon Park, Jaeyul Choi, Kwee Hyun Suh, Kyung Hoon Min

Abstract

The importance of transforming growth factor beta-activated kinase 1 (TAK1) to cell survival has been demonstrated in many studies. TAK1 regulates signalling cascades, the NF-κB pathway and the mitogen-activated protein kinase (MAPK) pathway. TAK1 inhibitors can induce the apoptosis of cancerous cells, and irreversible inhibitors such as (5Z)-7-oxozeaenol are highly potent. However, they can react non-specifically with cysteine residues in proteins, which may have serious adverse effects. Reversible covalent inhibitors have been suggested as alternatives. We synthesised imidazopyridine derivatives as novel TAK1 inhibitors, which have 2-cyanoacrylamide moiety that can form reversible covalent bonding. A derivative with 2-cyano-3-(6-methylpyridin-2-yl)acrylamide (13h) exhibited potent TAK1 inhibitory activity with an IC50 of 27 nM. It showed a reversible reaction with β-mercaptoethanol, which supports its potential as a reversible covalent inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。