Impact of the Hydrophilicity of Poly(sarcosine) on Poly(ethylene glycol) (PEG) for the Suppression of Anti-PEG Antibody Binding

聚肌氨酸的亲水性对聚乙二醇 (PEG) 抑制抗 PEG 抗体结合的影响

阅读:5
作者:Debabrata Maiti, Masayuki Yokoyama, Kouichi Shiraishi

Abstract

A method of poly(ethylene glycol) (PEG) conjugation is known as PEGylation, which has been employed to deliver therapeutic drugs, proteins, or nanoparticles by considering the intrinsic non- or very low immunogenic property of PEG. However, PEG has its weaknesses, and one major concern is the potential immunogenicity of PEGylated proteins. Because of its hydrophilicity, poly(sarcosine) (P(Sar)) may be an attractive-and superior-substitute for PEG. In the present study, we designed a double hydrophilic diblock copolymer, methoxy-PEG-b-P(Sar) m (m = 5-55) (mPEG-P(Sar) m ), and synthesized a triblock copolymer with hydrophobic poly(l-isoleucine) (P(Ile)). We validated that double hydrophilic mPEG-P(Sar) block copolymers suppressed the specific binding of three monoclonal anti-PEG antibodies (anti-PEG mAbs) to PEG. The results of our indirect ELISAs indicate that P(Sar) significantly helps to reduce the binding of anti-PEG mAbs to PEG. Importantly, the steady suppression of this binding was made possible, in part, thanks to the maximum number of sarcosine units in the triblock copolymer, as evidenced by sandwich ELISA and biolayer interferometry assay (BLI): the intrinsic hydrophilicity of P(Sar) had a clear supportive effect on PEG. Finally, because we used P(Ile) as a hydrophobic block, PEG-P(Sar) might be an attractive alternative to PEG in the search for protein shields that minimize the immunogenicity of PEGylated proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。