Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease

额颞叶痴呆和阿尔茨海默病的神经元外泌体中突触蛋白减少

阅读:6
作者:Edward J Goetzl, Dimitrios Kapogiannis, Janice B Schwartz, Iryna V Lobach, Laura Goetzl, Erin L Abner, Gregory A Jicha, Anna M Karydas, Adam Boxer, Bruce L Miller

Abstract

Synaptic dysfunction occurs early in senile dementias, presumably as a result of decreased levels of functional synaptic proteins as found in autopsied brains of patients with Alzheimer's disease (AD) or frontotemporal dementia (FTD). Plasma neuronal-derived exosomes (NDEs) were recovered by precipitation and immunoabsorption from 12 patients with AD, 16 with FTD, and 28 controls in a cross-sectional study, and from 9 patients with AD, 10 with FTD, and 19 controls in a longitudinal study. Six synaptic proteins in NDE extracts were quantified by ELISAs and normalized for exosome amounts. NDE levels of synaptophysin, synaptopodin, synaptotagmin-2, and neurogranin were significantly lower in patients with FTD and AD than in controls, but those of growth-associated protein 43 and synapsin 1 were reduced only in patients with AD. Functionally relevant phosphorylation of synapsin 1 serine 9 was reduced in patients with FTD and AD, although total synapsin 1 protein was higher in FTD than in controls. NDE levels of synaptotagmin, synaptophysin, and neurogranin were decreased years before dementia in patients with FTD and AD. NDE levels of synaptopodin, synaptotagmin, and synaptophysin, but not of amyloid β-peptide 42 or P-T181-tau, were correlated significantly with cognition assessed by mini-mental state examination or AD assessment scale-cognitive subscale. NDE synaptic proteins may be useful preclinical indices and progression measures in senile dementias.-Goetzl, E. J., Kapogiannis, D., Schwartz, J. B., Lobach, I. V., Goetzl, L., Abner, E. L., Jicha, G. A., Karydas, A. M., Boxer, A., Miller, B. L. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。