Hormonal Regulation and Transcriptomic Insights into Flower Development in Hydrangea paniculata 'Vanilla Strawberry'

香草草莓绣球花的激素调控和转录组学见解

阅读:6
作者:Chao Xue, Yuxing Wen, Song Sheng, Yu Gao, Yaoyi Zhang, Tingfeng Chen, Jiqing Peng, Shoujin Cao

Abstract

Understanding the molecular mechanisms that regulate flower growth, development, and opening is of paramount importance, yet these processes remain less explored at the genetic level. Flower development in Hydrangea paniculata 'Vanilla Strawberry' is finely tuned through hormonal signals, yet the genetic underpinnings are not well defined. This study addresses the gap by examining the influence of gibberellic acid (GA3), salicylic acid (SA), and ethylene (ETH) on the flowering traits and underlying molecular responses. Treatment with 100 mg/L SA significantly improved chlorophyll content and bolstered the accumulation of soluble sugars and proteins, advancing the flowering onset by 6 days and lengthening the flowering period by 11 days. Concurrently, this treatment enhanced inflorescence dimensions, increasing length, width, and petal area by 22.76%, 26.74%, and 27.45%, respectively. Contrastingly, 100 mg/L GA3 expanded inflorescence size but postponed flowering initiation and decreased inflorescence count. Higher concentrations of SA and GA3, as well as any concentration of ETH, resulted in delayed flowering and inferior inflorescence attributes. A physiological analysis over 50 days revealed that these regulators variably affected sugar and protein levels and modified antioxidant enzyme activities. An RNA-seq analysis during floral development highlighted significant transcriptomic reprogramming, with SA treatment downregulating Myb transcription factors, implicating them in the modulation of flowering timing and stress adaptation. These findings illuminate the complex interplay between hormonal treatments, gene expression, and flowering phenotypes in Hydrangea paniculata, offering valuable perspectives for ornamental horticulture optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。