IL-27 regulates autophagy in rheumatoid arthritis fibroblast-like synoviocytes via STAT3 signaling

IL-27 通过 STAT3 信号传导调节类风湿关节炎成纤维细胞样滑膜细胞的自噬

阅读:5
作者:Jiehong Hou, Wei Gao

Abstract

Rheumatoid arthritis (RA) is a highly prevalent autoimmune condition associated with pronounced synovial inflammation. The majority of RA patients required long-term treatment to control disease progression, thus imposing a significant financial burden on affected individuals. The development of RA is critically influenced by fibroblast-like synoviocytes (FLSs) within the synovial lining. IL-27 is an IL-6/IL-12 family cytokine that has recently been shown to play varied pro-inflammatory or protective roles in particular autoimmune diseases. However, the effects of IL-27 on FLSs in the context of RA have yet to be clarified and warrant further research. This study was developed to evaluate the impact of IL-27 treatment on apoptotic and autophagic activity in RA-associated FLSs, with a particular focus on the role of the STAT3 pathway in this regulatory context. Through these experiments, we found that IL-27 was able to suppress FLS proliferation and autophagic activity, with a high dose of this cytokine (100 ng/mL) markedly suppressing autophagy while simultaneously inducing some level of cellular apoptosis. The STAT3 inhibitor STA21 was found to reverse the IL-27-mediated suppression of autophagic activity in these RA-associated FLSs. Imbalanced cellular proliferation and apoptosis is of critical importance in the context of RA progression, and we found that IL-27 was able to regulate such imbalance and to enhance the apoptotic activity of RA FLSs by inhibiting rapamycin-activated autophagy. Together, these results indicate that IL-27 can regulate autophagic activity within RA-associated FLSs via the STAT3 signaling pathway, leading to inhibition of cellular proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。