Design, Synthesis, and In Vitro and In Silico Approaches of Novel Indanone Derivatives as Multifunctional Anti-Alzheimer Agents

新型茚满酮衍生物作为多功能抗阿尔茨海默病药物的设计、合成及体外和计算机模拟方法

阅读:7
作者:Begüm Nurpelin Sağlık, Serkan Levent, Derya Osmaniye, Asaf Evrim Evren, Abdullah Burak Karaduman, Yusuf Özkay, Zafer Asım Kaplancıklı

Abstract

Alzheimer's disease (AD) is a neurological, progressive illness that typically affects the elderly and is clinically distinguished by memory and cognitive decline. Due to a number of factors, including the absence of a radical treatment, an increase in the patient population over time, the high cost of care and treatment, and a significant decline in patients' quality of life, the importance of this disease has increased. These factors have all prompted increased interest among researchers in this field. The chemical structure of the donepezil molecule, the most popular and effective treatment response for AD, served as the basis for the design and synthesis of 42 novel indan-1-one derivatives in this study. Using IR, 1H, and 13C NMR as well as mass spectroscopic techniques, the compounds' structures were identified. Research on the compounds' antioxidant activities, cholinesterase (ChE) enzyme inhibition, monoamine oxidase (MAO) A and B inhibitory activities, β-amyloid plaque inhibition, and cytotoxicity impact was carried out. Inhibition of β-amyloid plaque aggregation; effective inhibition of AChE, BChE, and MAO-B enzymes; and significant antioxidant activity were all demonstrated by compounds D28-D30 and D37-D39. Because of their various actions, it was hypothesized that the related compounds may be useful in treating AD symptoms as well as providing palliative care.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。