Synthesis and Characterization of Furan-Based Methacrylate Oligomers Containing the Imine Functional Group for Stereolithography

用于立体光刻的含亚胺官能团的呋喃基甲基丙烯酸酯低聚物的合成与表征

阅读:6
作者:Nuttapol Risangud, Jittima Mama, Piyarat Sungkhaphan, Puttipong Pananusorn, Orawan Termkunanon, Muhammad Sulthan Arkana, Supang Sripraphot, Tareerat Lertwimol, Somprasong Thongkham

Abstract

Herein, a furan-based methacrylate oligomer (FBMO) featuring imine functional groups was synthesized for application in stereolithography. The preparation involved the imination reaction of 5-hydroxymethylfurfural (5-HMF) and amino ethanol. Utilizing 5-HMF as a sustainable building block for furan-based polymers, FBMO was formulated and subsequently integrated into photosensitive resin formulations along with methacrylate-containing diluents, such as PEGDMA and TEGDMA. The synthesized furan-based methacrylate oligomers underwent comprehensive characterization using FTIR, 1H NMR spectroscopy, and size exclusion chromatography. The impact of methacrylate-containing diluents on various properties of the formulated resins and the resulting 3D-printed specimens was systematically evaluated. This assessment included an analysis of rheological behavior, printing fidelity, mechanical properties, thermal stability, surface morphology, and cytotoxicity. By adjusting the ratios of FBMO to methacrylate-containing diluents within the range of 50:50 to 90:10, the viscosity of the resulting resins was controlled to fall within 0.04 to 0.28 Pa s at a shear rate of 10 s-1. The 3D-printed specimens exhibited precise conformity to the computer-aided design (CAD) model and demonstrated compressive moduli ranging from 0.53 ± 0.04 to 144 ± 6.70 MPa, dependent on the resin formulation and internal structure. Furthermore, cytotoxicity assessments revealed that the 3D-printed specimens were noncytotoxic to porcine chondrocytes. In conclusion, we introduce a new strategy to prepare the furan-based methacrylate oligomer (FBMO) and 3D-printed specimens with adjustable properties using stereolithography, which can be further utilized for appropriate applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。