Development of Isopropyl-Tailed Chalcones as a New Class of Selective MAO-B Inhibitors for the Treatment of Parkinson's Disorder

开发异丙基尾查尔酮作为一类新型选择性 MAO-B 抑制剂用于治疗帕金森病

阅读:7
作者:Sunil Kumar, Jong Min Oh, Mohamed A Abdelgawad, Mohammed A S Abourehab, Anand Kumar Tengli, Ashutosh Kumar Singh, Iqrar Ahmad, Harun Patel, Bijo Mathew, Hoon Kim

Abstract

Thirteen isopropyl chalcones (CA1-CA13) were synthesized and evaluated for their inhibitory activity against monoamine oxidase (MAO). All compounds inhibited MAO-B more effectively than MAO-A. Compound CA4 most potently inhibited MAO-B with an IC50 value of 0.032 μM, similar to that of CA3 (IC50 = 0.035 μM) and with high selectivity index (SI) values for MAO-B over MAO-A (SI = 49.75 and 353.23, respectively). The -OH (CA4) or -F (CA3) group at the para position on the A ring provided higher MAO-B inhibition than that of the other substituents (-OH ≥ -F > -Cl > -Br > -OCH2CH3 > -CF3). On the other hand, compound CA10 most potently inhibited MAO-A with an IC50 value of 0.310 μM and effectively MAO-B (IC50 = 0.074 μM). The Br-containing thiophene substituent (CA10) instead of the A ring showed the highest MAO-A inhibition. In a kinetic study, K i values of compounds CA3 and CA4 for MAO-B were 0.076 ± 0.001 and 0.027 ± 0.002 μM, respectively, and that of CA10 for MAO-A was 0.016 ± 0.005 μM. A reversibility study showed that CA3 and CA4 were reversible inhibitors of MAO-B and CA10 was a reversible inhibitor of MAO-A. In docking and molecular dynamics, the hydroxyl group of CA4 and two hydrogen bonds contributed to the stability of the protein-ligand complex. These results suggest that CA3 and CA4 are potent reversible selective MAO-B inhibitors and can be used for the treatment of Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。