In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy

利用无标记干涉反射显微镜对微管动力学和切断进行体外重建

阅读:7
作者:Yin-Wei Kuo, Jonathon Howard

Abstract

The dynamic architecture of the microtubule cytoskeleton is crucial for cell division, motility and morphogenesis. The dynamic properties of microtubules-growth, shrinkage, nucleation, and severing-are regulated by an arsenal of microtubule-associated proteins (MAPs). The activities of many of these MAPs have been reconstituted in vitro using microscope assays. As an alternative to fluorescence microscopy, interference-reflection microscopy (IRM) has been introduced as an easy-to-use, wide-field imaging technique that allows label-free visualization of microtubules with high contrast and speed. IRM circumvents several problems associated with fluorescence microscopy including the high concentrations of tubulin required for fluorescent labeling, the potential perturbation of function caused by the fluorophores, and the risks of photodamage. IRM can be implemented on a standard epifluorescence microscope at low cost and can be combined with fluorescence techniques like total-internal-reflection-fluorescence (TIRF) microscopy. Here we describe the experimental procedure to image microtubule dynamics and severing using IRM , providing practical tips and guidelines to resolve possible experimental hurdles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。