The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry

Netrin 受体 DCC 是青春期中皮质多巴胺回路组织所必需的

阅读:5
作者:Colleen Manitt, Andrea Mimee, Conrad Eng, Matthew Pokinko, Thomas Stroh, Helen M Cooper, Bryan Kolb, Cecilia Flores

Abstract

Netrins are guidance cues involved in neural connectivity. We have shown that the netrin-1 receptor DCC (deleted in colorectal cancer) is involved in the functional organization of the mesocorticolimbic dopamine (DA) system. Adult mice with a heterozygous loss-of-function mutation in dcc exhibit changes in indexes of DA function, including DA-related behaviors. These phenotypes are only observed after puberty, a critical period in the maturation of the mesocortical DA projection. Here, we examined whether dcc heterozygous mice exhibit structural changes in medial prefrontal cortex (mPFC) DA synaptic connectivity, before and after puberty. Stereological counts of tyrosine-hydroxylase (TH)-positive varicosities were increased in the cingulate 1 and prelimbic regions of the pregenual mPFC. dcc heterozygous mice also exhibited alterations in the size, complexity, and dendritic spine density of mPFC layer V pyramidal neuron basilar dendritic arbors. Remarkably, these presynaptic and postsynaptic partner phenotypes were not observed in juvenile mice, suggesting that DCC selectively influences the extensive branching and synaptic differentiation that occurs in the maturing mPFC DA circuit at puberty. Immunolabeling experiments in wild-type mice demonstrated that DCC is segregated to TH-positive fibers innervating the nucleus accumbens, with only scarce DCC labeling in mPFC TH-positive fibers. Netrin had an inverted target expression pattern. Thus, DCC-mediated netrin-1 signaling may influence the formation/maintenance of mesocorticolimbic DA topography. In support of this, we report that dcc heterozygous mice exhibit a twofold increase in the density of mPFC DCC/TH-positive varicosities. Our results implicate DCC-mediated netrin-1 signaling in the establishment of mPFC DA circuitry during puberty.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。