Exploring structural and biological insights of TEAD through rational design and synthesis of niflumic acid derivatives

通过合理设计和合成尼氟酸衍生物,探索TEAD的结构和生物学特性

阅读:2
作者:Yong-Sung Choi ,Yoon-Jung Kim ,Yeram Jeon ,Jong Soon Kang ,Juhee Lee ,Eunmi Hong ,Young-Hoon Park ,Wantae Kim ,Boksik Cha ,Raok Jeon

Abstract

Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket. We anticipate that precise targeting of the polar side pocket could facilitate the discovery of inhibitors with enhanced potencies and properties. Herein, we selected niflumic acid as the core scaffold suitable for targeting the three characteristic components of TEAD palmitate pocket. Reversible and irreversible compounds with substituents capable of directing each part of the palmitate pocket were designed. The newly synthesised compounds inhibited the palmitoylation and transcriptional activity of TEAD and elicited growth-inhibitory effects against several carcinomas, including mesothelioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。