Synthesis and characterization of biodegradable polyurethane for hypopharyngeal tissue engineering

用于下咽组织工程的可生物降解聚氨酯的合成及表征

阅读:8
作者:Zhisen Shen, Dakai Lu, Qun Li, Zongyong Zhang, Yabin Zhu

Abstract

Biodegradable crosslinked polyurethane (cPU) was synthesized using polyethylene glycol (PEG), L-lactide (L-LA), and hexamethylene diisocyanate (HDI), with iron acetylacetonate (Fe(acac)3) as the catalyst and PEG as the extender. Chemical components of the obtained polymers were characterized by FTIR spectroscopy, (1)H NMR spectra, and Gel Permeation Chromatography (GPC). The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability, and cytotoxicity were tested via differential scanning calorimetry (DSC), tensile tests, contact angle measurements, and cell culture. The results show that the synthesized cPU possessed good flexibility with quite low glass transition temperature (T g , -22°C) and good wettability. Water uptake measured as high as 229.7 ± 18.7%. These properties make cPU a good candidate material for engineering soft tissues such as the hypopharynx. In vitro and in vivo tests showed that cPU has the ability to support the growth of human hypopharyngeal fibroblasts and angiogenesis was observed around cPU after it was implanted subcutaneously in SD rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。