Study on the Mechanism of the Danggui-Chuanxiong Herb Pair on Treating Thrombus through Network Pharmacology and Zebrafish Models

基于网络药理学和斑马鱼模型探讨当归川芎药对治疗血栓的作用机制

阅读:5
作者:Mengqi Zhang, Peihai Li, Shanshan Zhang, Xuanming Zhang, Lizhen Wang, Yun Zhang, Xiaobin Li, Kechun Liu

Abstract

Danggui-Chuanxiong (DC) is a commonly used nourishing and activating blood medicine pair in many gynecological prescriptions and modern Chinese medicine. However, its activating blood mechanism has not been clearly elucidated. Our research aimed at investigating the activating blood mechanisms of DC using network pharmacology and zebrafish experiments. Network pharmacology was used to excavate the potential targets and mechanisms of DC in treating thrombus. The antithrombotic, anti-inflammatory, antioxidant, and vasculogenesis activities of DC and the main components of DC, ferulic acid (DC2), ligustilide (DC7), and levistilide A (DC17), were evaluated by zebrafish models in vivo. A total of 24 compounds were selected as the active ingredients with favorable pharmacological parameters for this herb pair. A total of 89 targets and 18 pathways related to the thrombus process were gathered for active compounds. The genes, TNF, CXCR4, IL2, ESR1, FGF2, HIF1A, CXCL8, AR, FOS, MMP2, MMP9, STAT3, and RHOA, might be the main targets for this herb pair to exert cardiovascular activity from the analysis of protein-protein interaction and KEGG pathway results, which were mainly related to inflammation, vasculogenesis, immunity, hormones, and so forth. The zebrafish experiment results showed that DC had antithrombotic, anti-inflammatory, antioxidant, and vasculogenesis activities. The main compounds had different effects of zebrafish activities. Especially, the antithrombotic activity of the DC17H group, anti-inflammatory activities of DCH and DC2H groups, antioxidant activities of DCM, DCH, DC2, DC7, and DC17 groups, and vasculogenesis activities of DCM, DCH, and DC2 groups were stronger than those of the positive group. The integrated method coupled zebrafish models with network pharmacology provided the insights into the mechanisms of DC in treating thrombus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。