P2Y1 receptor modulation of the pre-Bötzinger complex inspiratory rhythm generating network in vitro

P2Y1 受体调节体外前 Bötzinger 复合吸气节律生成网络

阅读:9
作者:Amanda R Lorier, Adrianne G Huxtable, Dean M Robinson, Janusz Lipski, Gary D Housley, Gregory D Funk

Abstract

ATP is released during hypoxia from the ventrolateral medulla (VLM) and activates purinergic P2 receptors (P2Rs) at unknown loci to offset the secondary hypoxic depression of breathing. In this study, we used rhythmically active medullary slices from neonatal rat to map, in relation to anatomical and molecular markers of the pre-Bötzinger complex (preBötC) (a proposed site of rhythm generation), the effects of ATP on respiratory rhythm and identify the P2R subtypes responsible for these actions. Unilateral microinjections of ATP in a three-dimensional grid within the VLM revealed a "hotspot" where ATP (0.1 mM) evoked a rapid 2.2 +/- 0.1-fold increase in inspiratory frequency followed by a brief reduction to 0.83 +/- 0.02 of baseline. The hotspot was identified as the preBötC based on histology, overlap of injection sites with NK1R immunolabeling, and potentiation or inhibition of respiratory frequency by SP ([Sar9-Met(O2)11]-substance P) or DAMGO ([D-Ala2,N-MePhe4,Gly-ol5]-enkephalin), respectively. The relative potency of P2R agonists [2MeSADP (2-methylthioadenosine 5'-diphosphate) approximately = 2MeSATP (2-methylthioadenosine 5'-triphosphate) approximately = ATPgammas (adenosine 5'-[gamma-thio]triphosphate tetralithium salt) approximately = ATP >> UTP approximately = alphabeta meATP (alpha,beta-methylene-adenosine 5'-triphosphate)] and attenuation of the ATP response by MRS2179 (2'-deoxy-N6-methyladenosine-3',5'-bisphosphate) (P2Y1 antagonist) indicate that the excitation is mediated by P2Y1Rs. The post-ATP inhibition, which was never observed in response to ATPgammas, is dependent on ATP hydrolysis. These data establish in neonatal rats that respiratory rhythm generating networks in the preBötC are exquisitely sensitive to P2Y1R activation, and suggest a role for P2Y1Rs in respiratory motor control, particularly in the P2R excitation of rhythm that occurs during hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。