Supercritical CO2-Mediated Decellularization of Bovine Spinal Cord Meninges: A Comparative Study for Decellularization Performance

超临界 CO2 介导的牛脊髓脑膜脱细胞:脱细胞性能的比较研究

阅读:10
作者:Eren Ozudogru, Tugce Kurt, Burak Derkus, Ugur Cengiz, Yavuz Emre Arslan

Abstract

The extracellular matrix (ECM) of spinal meninge tissue closely resembles the wealthy ECM content of the brain and spinal cord. The ECM is typically acquired through the process of decellularizing tissues. Nevertheless, the decellularization process of the brain and spinal cord is challenging due to their high-fat content, in contrast to the spinal meninges. Hence, bovine spinal cord meninges offer a promising source to produce ECM-based scaffolds, thanks to their abundance, accessibility, and ease of decellularization for neural tissue engineering. However, most decellularization techniques involve disruptive chemicals and repetitive rinsing processes, which could lead to drastic modifications in the tissue ultrastructure and a loss of mechanical stability. Over the past decade, supercritical fluid technology has experienced considerable advancements in fabricating biomaterials with its applications spreading out to tissue engineering to tackle the complications mentioned above. Supercritical carbon-dioxide (scCO2)-based decellularization procedures especially offer a significant advantage over classical decellularization techniques, enabling the preservation of extracellular matrix components and structures. In this study, we decellularized the bovine spinal cord meninges by seven different methods. To identify the most effective approach, the decellularized matrices were characterized by dsDNA, collagen, and glycosaminoglycan contents and histological analyses. Moreover, the mechanical properties of the hydrogels produced from the decellularized matrices were evaluated. The novel scCO2-based treatment was completed in a shorter time than the conventional method (3 versus 7 days) while maintaining the structural and mechanical integrity of the tissue. Additionally, all hydrogels derived from scCO2-decellularized matrices demonstrated high cell viability and biocompatibility in a cell culture. The current study suggests a rapid, effective, and detergent-free scCO2-assisting decellularization protocol for clinical tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。