Cerebellar synaptic defects and abnormal motor behavior in mice lacking alpha- and beta-dystrobrevin

缺乏 α- 和 β-dystrobrevin 的小鼠的小脑突触缺陷和异常运动行为

阅读:13
作者:R Mark Grady, David F Wozniak, Kevin K Ohlemiller, Joshua R Sanes

Abstract

The dystrobrevins (alphaDB and betaDB) bind directly to dystrophin and are components of a transmembrane dystrophin-glycoprotein complex (DGC) that links the cytoskeleton to extracellular proteins in many tissues. We show here that alphaDB, betaDB, and dystrophin are all concentrated at a discrete subset of inhibitory synapses on the somata and dendrites of cerebellar Purkinje cells. Dystrophin is depleted from these synapses in mice lacking both alphaDB and betaDB, and DBs are depleted from these synapses in mice lacking dystrophin. In dystrophin mutants and alphaDB,betaDB double mutants, the size and number of GABA receptor clusters are decreased at cerebellar inhibitory synapses, and sensorimotor behaviors that reflect cerebellar function are perturbed. Synaptic and behavioral abnormalities are minimal in mice lacking either alphaDB or betaDB. Together, our results show that the DGC is required for proper maturation and function of a subset of inhibitory synapses, that DB is a key component of this DGC, and that interference with this DGC leads to behavioral abnormalities. We suggest that motor deficits in muscular dystrophy patients, which are their cardinal symptoms, may reflect not only peripheral derangements but also CNS defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。