Fabrication of an Injectable Star-polylactide/Thiolated Hyaluronate Hydrogel as a Double Drug-Delivery System for Cancer Treatment

可注射星形聚乳酸/硫醇化透明质酸水凝胶的制备及其作为癌症治疗双药物输送系统的应用

阅读:6
作者:Yifan Zhang, Min Fang, Zhiyi Tan, Yu-Ang Zhang, Chun-Yu Huang, Lu Lu, Jinhuan Tian, Lihua Li, Changren Zhou

Abstract

Unsatisfactory solid-tumor penetration or rapid metabolism of nanomaterials limits their therapeutic efficacy. Here, we designed an injectable thiolated hyaluronate (HA-SH) hydrogel as a stable drug-releasing platform for in situ tumor treatment. Biodegradable star-shaped polylactide (S-PLLA) was first synthesized and fabricated to porous microspheres to encapsulate hydrophobic curcumin (Cur@S-PLLA), which was then blended with hydrophilic doxorubicin (Dox) and the HA-SH precursor to form composite in situ formable hydrogels [Cur@S-PLLA/(Dox)HA-SH]. The results showed that adding the microspheres improved the performance of the hydrogel, such as decreasing the gelation time from 1080 s to 960 s and also the swelling ratio. The mechanical strength increased from 27 to 45 kPa. In addition, the double drug system guaranteed a sustained release of drugs, releasing Dox at the early stage, with the continuous later release of Cur after gel swelling or S-PLLA degradation to achieve long-lasting tumor suppression, which inhibits the survival of cancer cells. The inhibitory effects of the hydrogels on MCF-7 were studied. The cell activity in the double-loaded hydrogel was significantly lower than that of the control groups, and apparent dead cells appeared in 2 days and fewer living cells with time. Flow cytometry revealed that the Cur@S-PLLA/(Dox)HA-SH group had the highest apoptosis ratio of 86.60% at 12 h, and the drugs caused the cell cycle to be blocked in phase M to reduce cell division. In summary, the innovative release platform is expected to be used in long-lasting tumor suppression and provides more ideas for the design of drug carriers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。