Stimulated Emission Depletion Inspired Sub-100 nm Structuring of Epoxides Using 2-Chlorothioxanthone as Photosensitizer

受激发射损耗激发亚 100 纳米环氧物结构,使用 2-氯噻吨酮作为光敏剂

阅读:4
作者:Sourav Islam, Thomas A Klar

Abstract

Until very recently, the enhancement of multiphoton-based optical lithography by stimulated emission depletion (STED) inspired techniques was limited mostly to (meth)acrylates. Epoxides, which play an important role in semiconductor clean-room technology, were basically excluded from capitalizing on STED-inspired lithography, and if they were successfully used in STED-inspired lithography, the achievable structure sizes remained at 125 nm and above. We now found that using 2-chlorothioxanthone (CTX) as a sensitizer for a sulfonium salt acting as the photoinitiator allows for shrinking the structure size down to 83 nm. Compared to the previously used sensitizer 2-isopropylthioxanthone, the triplet lifetime of CTX within the epoxide monomers is supposed to be prolonged by 40%, which renders an optical depletion via excited triplet state absorption more efficient, leading to a sub-100 nm structuring capability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。