A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents

依赖于 Kv1 型 K+ 电流增加的 GABA 能抑制发育转换

阅读:5
作者:MacKenzie A Howard, R Michael Burger, Edwin W Rubel

Abstract

Mature nucleus magnocellularis (NM) neurons, the avian homolog of bushy cells of the mammalian anteroventral cochlear nucleus, maintain high [Cl-]i and depolarize in response to GABA. Depolarizing GABAergic postsynaptic potentials (GPSPs) activate both the synaptic conductance and large outward currents, which, when coupled together, inhibit spikes via shunting and spike threshold accommodation. We studied the maturation of the synaptic and voltage-dependent components of inhibition in embryonic NM neurons using whole-cell and gramicidin-perforated patch-clamp techniques to measure Cl- reversal potential, GABAergic synaptic responses, and voltage-dependent outward currents. We found that GABA enhanced excitability in immature NM neurons, undergoing a switch to inhibitory between embryonic day 14 (E14) and E18. Low-voltage-activated Kv1-type (dendrotoxin-I sensitive) K+ currents increased in amplitude between E14 and E18, whereas Cl- reversal potential and synaptic conductances remained relatively stable during this period. GABA was rendered inhibitory because of this increase in low-voltage activated outward currents. GPSPs summed with other inputs to increase spike probability at E14. GPSPs shunted spikes at E18, but blocking Kv1 channels transformed this inhibition to excitation, similar to E14 neurons. Subthreshold depolarizing current steps, designed to activate outward currents similar to depolarizing GPSPs, enhanced excitability at E14 but inhibited spiking in E18 neurons. Blocking Kv1 channels reversed this effect, rendering current steps excitatory. We present the novel finding that the developmental transition of GABAergic processing from increasing neuronal excitability to inhibiting spiking can depend on changes in the expression of voltage-gated channels rather than on a change in Cl- reversal potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。