N-glycosylation of the envelope glycoprotein I is essential for the proliferation and virulence of the duck plague virus

包膜糖蛋白I的N-糖基化对鸭瘟病毒的增殖和毒力至关重要

阅读:6
作者:Yaru Ning #, Mingshu Wang #, Anchun Cheng, Qiao Yang, Bin Tian, Xumin Ou, Di Sun, Yu He, Zhen Wu, Xinxin Zhao, Shaqiu Zhang, Ying Wu, Juan Huang, Yanling Yu, Ling Zhang, Renyong Jia, Mafeng Liu, Dekang Zhu, Shun Chen

Abstract

Duck plague virus (DPV) causes the highly pathogenic duck plague, and the envelope glycoprotein I (gI), as one of the key virulence genes, has not yet had its critical virulence sites identified through screening. This study used reverse genetics technology to target the gI, specifically within the DPV genome. Four DPV mutants with gI N-glycosylation site mutations were designed and constructed, and these mutant strains were successfully rescued. Our results confirmed that three asparagine residues of gI (N69, N78, and N265) are N-glycosylation sites, and western blot analysis substantiated that glycosylation at each predicted N-glycosylation site was compromised. The deglycosylation of gI leads to the protein misfolding and subsequent retention in the endoplasmic reticulum (ER). The subsequent deglycosylated gI is carried into the Golgi apparatus (GM130) in the interaction of gE. Compared to the parental virus, the mutated virus shows a 66.3% reduction in intercellular transmission capability. In ducks, the deglycosylation of gI significantly reduces DPV replication in vivo, thereby weakening the virulence of DPV. This study represents the first successful creation of a weak DPV virus strain by specific mutation at the N-glycosylation site. The findings provide a foundational understanding of DPV pathogenesis and form the basis for developing live attenuated vaccines against the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。