NLRC3 protein inhibits inflammation by disrupting NALP3 inflammasome assembly via competition with the adaptor protein ASC for pro-caspase-1 binding

NLRC3 蛋白通过与衔接蛋白 ASC 竞争 pro-caspase-1 结合来破坏 NALP3 炎症小体的组装,从而抑制炎症

阅读:5
作者:Elif Eren, Mesut Berber, Nesrin Özören

Abstract

Inflammasomes are multiprotein complexes that sense pathogen-associated and danger-associated molecular patterns and induce inflammation in cells. The NALP3 inflammasome is tightly regulated by recently discovered control mechanisms, but other modulators still remain to be characterized. NLR family CARD-containing 3 (NLRC3) protein, a caspase recruitment domain (CARD)-containing member of the nucleotide oligomerization domain-like receptor (NLR) family, was found to down-regulate the NF-κB pathway and stimulator of interferon genes (STING)-dependent cytokine secretion. However, the effect of NLRC3 on the NALP3 inflammasome or other inflammasomes is still unknown. We hypothesized that NLRC3 might inhibit NALP3 inflammasome complex assembly. Toward this end, we tested whether NLRC3 overexpression or knockdown influences NALP3 activity in human monocyte and HEK293FT cells when the complex is ectopically reconstituted. We found that NLRC3 indeed decreases NALP3-induced IL-1β maturation and secretion, pro-caspase-1 cleavage, and speck formation by apoptosis-associated speck-like protein containing a CARD (ASC) protein in response to NALP3 activators. We also show that endogenous NLRC3 interacts with both ASC and pro-caspase-1 but not with NALP3, disrupts ASC speck formation through its CARD, and impairs the ASC and pro-caspase-1 interaction. Moreover, the NLRC3 CARD alone could dampen IL-1β secretion and ASC speck formation induced by NALP3 mutants associated with autoinflammatory diseases. In conclusion, we show here that, besides its role in the inhibition of the NF-κB pathway, NLRC3 interferes with the assembly and activity of the NALP3 inflammasome complex by competing with ASC for pro-caspase-1 binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。