Pathologic Fibroblasts in Idiopathic Subglottic Stenosis Amplify Local Inflammatory Signals

特发性声门下狭窄中的病理性成纤维细胞会放大局部炎症信号

阅读:6
作者:Robert J Morrison, Nicolas-George Katsantonis, Kevin M Motz, Alexander T Hillel, C Gaelyn Garrett, James L Netterville, Christopher T Wootten, Susan M Majka, Timothy S Blackwell, Wonder P Drake, Alexander Gelbard

Conclusion

IL-17A directly drives iSGS scar fibroblast proliferation, synergizes with transforming growth factor ß1 to promote extracellular matrix production, and amplifies local inflammatory signaling. Glucocorticoids appear to partially abrogate fibroblast-dependent inflammatory signaling. These results offer mechanistic support for future translational study of clinical reagents for manipulation of the IL-17A pathway in iSGS patients.

Methods

Primary fibroblast cell lines from iSGS subjects, idiopathic pulmonary fibrosis subjects, and normal control airways were utilized for analysis. Protein, molecular, and flow cytometric techniques were applied in vitro to assess the phenotype and functional response of disease fibroblasts to IL-17A.

Objective

To characterize the phenotype and function of fibroblasts derived from airway scar in idiopathic subglottic stenosis (iSGS) and to explore scar fibroblast response to interleukin 17A (IL-17A). Study design: Basic science. Setting: Laboratory. Subjects and

Results

Mechanistically, IL-17A drives iSGS scar fibroblast proliferation ( P < .01), synergizes with transforming growth factor ß1 to promote extracellular matrix production (collagen and fibronectin; P = .04), and directly stimulates scar fibroblasts to produce chemokines (chemokine ligand 2) and cytokines (IL-6 and granulocyte-macrophage colony-stimulating factor) critical to the recruitment and differentiation of myeloid cells ( P < .01). Glucocorticoids abrogated IL-17A-dependent iSGS scar fibroblast production of granulocyte-macrophage colony-stimulating factor ( P = .02).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。