Vismodegib Identified as a Novel COX-2 Inhibitor via Deep-Learning-Based Drug Repositioning and Molecular Docking Analysis

通过基于深度学习的药物重新定位和分子对接分析,Vismodegib 被鉴定为新型 COX-2 抑制剂

阅读:7
作者:Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Won Sun Park, Jin-Hee Han, Yong-Soo Kwon, Hee-Jae Lee, Wanjoo Chun

Abstract

Artificial intelligence algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Deep-learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained deep-learning model to screen an FDA-approved drug library for novel COX-2 inhibitors. Reference COX-2 data sets, composed of active and decoy compounds, were obtained from the DUD-E database. To extract molecular features, compounds were subjected to RDKit, a cheminformatic toolkit. GraphConvMol, a graph convolutional network model from DeepChem, was applied to obtain a predictive model from the DUD-E data sets. Then, the COX-2 inhibitory potential of the FDA-approved drugs was predicted using the trained deep-learning model. Vismodegib, an anticancer agent that inhibits the hedgehog signaling pathway by binding to smoothened, was predicted to inhibit COX-2. Noticeably, some compounds that exhibit high potential from the prediction were known to be COX-2 inhibitors, indicating the prediction model's liability. To confirm the COX-2 inhibition activity of vismodegib, molecular docking was carried out with the reference compounds of the COX-2 inhibitor, celecoxib, and ibuprofen. Furthermore, the experimental examination of COX-2 inhibition was also carried out using a cell culture study. Results showed that vismodegib exhibited a highly comparable COX-2 inhibitory activity compared to celecoxib and ibuprofen. In conclusion, the deep-learning model can efficiently improve the virtual screening of drugs, and vismodegib can be used as a novel COX-2 inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。