β-Glucan-Functionalized Mesoporous Silica Nanoparticles for Smart Control of Fungicide Release and Translocation in Plants

β-葡聚糖功能化的介孔二氧化硅纳米粒子用于智能控制植物中杀菌剂的释放和转运

阅读:9
作者:Amir E Kaziem, Liupeng Yang, Yigang Lin, Hanhong Xu, Zhixiang Zhang

Abstract

In this work, an enzyme-responsive nanovehicle for improving captan (CAP) contact fungicide bioactivity and translocation in plant tissues was synthesized (CAP-MSNs-β-glucan) by attaching β-glucan to the outer surface of mesoporous silica nanoparticles. CAP-MSNs-β-glucan properties were tested by FTIR, ζ-potential, DLS, XRD, TGA, FE-SEM, and HR-TEM. Cargo protection ability of CAP-MSNs-β-glucan from photolysis and hydrolysis was examined in comparison to CAP commercial formulation (CAP-CF). CAP-MSNs-β-glucan distribution in plant tissues, bioactivity against Fusarium graminearum, and biotoxicity toward zebrafish (Danio rerio) were tested and compared with that of CAP-CF. CAP-MSNs-β-glucan results showed good loading efficacy reaching 18.39% and enzymatic-release dependency up to 83.8% of the total cargo after 20 days of β-glucan unsealing. CAP-MSNs-β-glucan showed significant release protection under pH changes. MSNs-β-glucan showed excellent CAP protection from UV. CAP-MSNs-β-glucan showed better distribution in corn tissues and 1.28 more inhibiting potency to Fusarium graminearum than CAP-CF. CAP-MSNs-β-glucan showed 1.88 times lower toxicity than CAP-CF to zebrafish after 96 h of treatment. We recommend using such formulations to overcome shortcomings of contact fungicides and achieve better and sustainable farming.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。