CDK1 mediates the metabolic regulation of DNA double-strand break repair in metaphase II oocytes

CDK1 介导中期 II 卵母细胞 DNA 双链断裂修复的代谢调控

阅读:8
作者:Tian-Jin Xia, Feng-Yun Xie, Juan Chen, Xiao-Guohui Zhang, Sen Li, Qing-Yuan Sun, Qin Zhang, Shen Yin, Xiang-Hong Ou, Jun-Yu Ma1

Background

During oocyte maturation, DNA double-strand breaks (DSBs) can decrease oocyte quality or cause mutations. How DSBs are repaired in dividing oocytes and which factors influence DSB repair are not well understood.

Conclusions

In summary, MII oocytes exhibit high heterogeneity in DSB repair, which is regulated by both metabolic factors and CDK1 activity. These results not only expand our understanding of oocyte DSB repair but also contribute to the modification of in vitro maturation medium for oocytes.

Results

By analyzing DSB repair pathways in oocytes at different stages, we found that break-induced replication (BIR) and RAD51-mediated homology-directed repair (HDR) were highly active in germinal vesicle breakdown (GVBD) oocytes but suppressed in metaphase II (MII) oocytes and the BIR in oocytes was promoted by CDK1 activity. By culturing oocytes in different media, we found that high-energy media, such as DMEM, decreased CDK1 protein levels and suppressed BIR or HDR in MII oocytes. In contrast, 53BP1-mediated nonhomologous end joining (NHEJ) repair was inhibited in germinal vesicle (GV) and GVBD oocytes but promoted in MII oocytes, and NHEJ was not affected by DMEM medium and CDK1 activity. In addition, in DSB MII oocytes, polymerase theta-mediated end joining (TMEJ) was found to be suppressed by CDK1 activity and promoted by high-energy media. Conclusions: In summary, MII oocytes exhibit high heterogeneity in DSB repair, which is regulated by both metabolic factors and CDK1 activity. These results not only expand our understanding of oocyte DSB repair but also contribute to the modification of in vitro maturation medium for oocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。