Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis

鸡大细胞核神经元的膜和突触特性的音调梯度

阅读:7
作者:Iwao Fukui, Harunori Ohmori

Abstract

Nucleus magnocellularis (NM) is a division of the avian cochlear nucleus that extracts the timing of auditory signals. We compared the membrane excitability and synaptic transmission along the tonotopic axis of NM. Neurons expressed a Kv1.1 potassium channel mRNA and protein predominantly in the high characteristic frequency (CF) region of NM. In contrast, the expression of Kv1.2 mRNA did not change tonotopically. Neurons also showed tonotopic gradients in resting potential, spike threshold, amplitude, and membrane rectification. All neurons were sensitive to 100 nm dendrotoxin, but the effects were most significant in the high CF neurons. The EPSC recorded by minimal stimulation of auditory nerve fibers (ANFs) was 13 times larger in high CF neurons than in low CF neurons. Moreover, EPSCs were generated in an all-or-none manner in the high CF neurons when stimulus intensity was increased, whereas EPSCs were graded in the low CF neurons, indicating multiple axonal inputs. ANF synaptic terminals were visualized by DiI. ANF formed enfolding end-bulbs of Held around the cell body in the high and middle CF region but not in the low CF region. These observations indicate coordinated gradients of neuronal properties both presynaptically and postsynaptically along the tonotopic axis. Such specializations may be suitable for extracting and preserving the timing information of auditory signals over a wide range of acoustic frequencies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。