Highly Efficient Photoelectrochemical Detection of Cystatin C Based on a Core-Shell MOF Nanocomposite with Biomimetic-Catalysis Amplification

基于核壳型 MOF 纳米复合材料的仿生催化放大高效光电化学检测胱抑素 C

阅读:5
作者:Mengshi Xia, Pan Yang, Chuiyu Zhu, Yue Hu, Lichao Fang, Junsong Zheng, Xiaolong Wang, Yan Li

Abstract

Cystatin C (CysC) has been proven to be used to diagnose acute kidney injury (AKI) rapidly and sensitively early. Therefore, it is urgent to develop a sensitive, novel, and rapid method for detecting CysC. In this work, a novel photoelectrochemical (PEC) biosensor was designed for ultrasensitive CysC detection. Ti-MOF@DM-LZU1@Au as a photosensitive material was first modified on the ITO electrode surface. Then, Ab1 and CysC were assembled on the electrode via the specific immunoresponse of an antigen and antibody. Lastly, the conjugate Ab2/l-Cys bilayer/l-Cys-hemin/G-quadruplex with self-catalytic enzyme performance, as a signal amplification approach, could further react with CysC and Ab1, which resulted in a stronger photocurrent. As expected, the constructed PEC sensor realized the ultrasensitive detection of CysC, with a detection range of 10 pg/mL to 16 μg/mL and a lower limit of 8.023 pg/mL. The biosensor had excellent repeatability, selectivity, and stability. Moreover, it can provide a new method for the sensitive and rapid detection of other protein molecules in clinical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。