An LQT2-related mutation in the voltage-sensing domain is involved in switching the gating polarity of hERG

电压传感域中的 LQT2 相关突变与 hERG 门控极性的转换有关

阅读:8
作者:Zhipei Liu #, Feng Wang #, Hui Yuan #, Fuyun Tian #, Chuanyan Yang, Fei Hu, Yiyao Liu, Meiqin Tang, Meixuan Ping, Chunlan Kang, Ting Luo, Guimei Yang, Mei Hu, Zhaobing Gao, Ping Li6

Background

Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown.

Conclusions

Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.

Results

We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. Conclusions: Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。