Tailoring Vanadium-Based Magnetic Catalyst by In Situ Encapsulation of Tungsten Disulfide and Applications in Abatement of Multiple Pollutants

原位包覆二硫化钨制备钒基磁性催化剂及其在多污染物减排中的应用

阅读:6
作者:Suryyia Manzoor, Khalid Aziz, Hina Raza, Shamaila Manzoor, Muhammad Imran Khan, Asma Naz, Abdallah Shanableh, Alsamani A M Salih, Noureddine Elboughdiri

Abstract

A magnetic nanocomposite of tungsten and vanadium was employed as a catalyst for the mitigation of water contaminants, including a carcinogenic dye (Congo red, CR), a widely used pesticide (glyphosate), and the bacterial strain Escherichia coli. Additionally, it was subjected to several characterization techniques. X-ray diffraction spectroscopy examination validated the synthesized nanoparticles' crystalline nature, and scanning electron microscopy and energy-dispersive X-ray analysis were employed to examine the morphology and elemental composition of the catalyst. The use of thermogravimetric analysis enabled the elaboration of the thermal behavior of tungsten sulfide-vanadium decorated with Fe2O3 nanoparticles. The experiments were conducted under visible light conditions. The highest levels of photodegradation of 96.24 ± 2.5% for CR and 98 ± 1.8% for glyphosate were observed following a 180 min exposure to visible light at pH values of 6 and 8, respectively. The quantum yields for CR and Gly were calculated to be 9.2 × 10-3 and 4.9 × 10-4 molecules photon-1, respectively. The findings from the scavenger analysis suggest the involvement of hydroxyl radicals in the degradation mechanism. The study evaluated the inhibition of E. coli growth when exposed to a concentration of 0.1 g/10 mL of the photocatalyst, utilizing a 1 mL sample of the bacterial strain. The successful elimination of CR and glyphosate from water-based solutions, along with the subsequent antibacterial experiments, has substantiated the efficacy of the photocatalyst in the field of environmental remediation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。