Rapid effect of GNRH1 on follicle-stimulating hormone beta gene expression in LbetaT2 mouse pituitary cells requires the progesterone receptor

GNRH1 对 LbetaT2 小鼠垂体细胞中促卵泡激素 β 基因表达的快速影响需要孕酮受体

阅读:4
作者:Beum-Soo An, Song Ling Poon, Wai-Kin So, Geoffrey L Hammond, Peter C K Leung

Abstract

Gonadotropin-releasing hormone (GNRH) activates the progesterone receptor (PGR) in pituitary cells and accentuates gonadotropin expression. We show that GNRH1 increases Fshb mRNA levels in LbetaT2 mouse pituitary cells within 8 h and is three times more effective than GNRH2. By contrast, GNRH1 and GNRH2 do not affect Lhb gene expression in these cells. Within the same time frame, small interfering RNA (siRNA) knockdown of the PGR in LbetaT2 cells reduced GNRH1 activation of a PGR response element (PRE)-driven luciferase reporter gene and Fshb mRNA levels by >50%. Chromatin immunoprecipitation (ChIP) assays also demonstrated that PGR loading on the PRE within the Fshb gene promoter in LbetaT2 cells occurred within 8 h after GNRH1 treatment and was lost by 24 h. While the GNRH1-induced upregulation of the PRE reporter gene and Fshb mRNA levels was attenuated by cotreatment with protein kinase A (H-89) and protein kinase C (GF109203X) inhibitors, only GF109203X inhibited PGR phosphorylation at Ser249 in LbetaT2 cells. Immunoprecipitation assays also showed a progressive increase in the interaction between the PGR and its coactivator NCOA3 that peaked at 8 h coincident with the increase in Fshb mRNA after GNRH1 treatment. The siRNA-mediated knockdown of NCOA3 in LbetaT2 cells also reduced Fshb mRNA levels after GNRH1 treatment and loading of NCOA3 on the Fshb promoter PRE in a ChIP assay. We conclude that the rapid effect of GNRH1 on Fshb expression in LbetaT2 cells is mediated by PGR phosphorylation and loading at the PRE within the Fshb promoter together with NCOA3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。