Pygopus2 inhibits the efficacy of paclitaxel-induced apoptosis and induces multidrug resistance in human glioma cells

Pygopus2 抑制紫杉醇诱导的细胞凋亡并诱导人胶质瘤细胞产生多药耐药性

阅读:7
作者:Cefan Zhou, Hongxia Cheng, Wenying Qin, Yi Zhang, Hui Xiong, Jing Yang, Huang Huang, Yefu Wang, Xing-Zhen Chen, Jingfeng Tang

Abstract

Anti-microtubule drugs, such as paclitaxel (PTX), are extensively used for the treatment of numerous cancers. However, growing evidence has shown that PTX resistance, either intrinsic or acquired, frequently occurs in patients and results in the failure of treatment, contributing to the high cancer mortality rate. Therefore, it is necessary to identify the genes or pathways involved in anti-microtubule drug resistance for future successful treatment of cancers. Pygopus2 (Pygo2), which contains a Zn-coordinated plant homeodomain (PHD) finger domain, is critical for β-catenin-dependent transcriptional switches in normal and malignant tissues and is over-expressed in various cancers, including human brain glioma. In this study, we report that over-expression of Pygo2 inhibited the efficacy of PTX and contributed to cell multidrug resistance in two different ways. First, over-expression of Pygo2 inhibited the PTX-induced phosphorylation of B-cell lymphoma 2 (Bcl-2), suppressing the proteolytic cleavage of procaspase-8/9 and further inhibiting the activation of caspase-3, which also inhibits the activation of the JNK/SAPK pathway, ultimately inhibiting cell apoptosis. Second, over-expression of Pygo2 facilitated the expression of P-glycoprotein, which acts as a drug efflux pump, by promoting the transcription of Multi-drug resistance 1 (MDR1) at the MDR1 promoter loci, resulting in acceleration of the efflux of PTX.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。