Facile Synthesis of Monodispersed SiO2@Fe3O4 Core-Shell Colloids for Printing and Three-Dimensional Coating with Noniridescent Structural Colors

单分散 SiO2@Fe3O4 核壳胶体的简易合成及其用于印刷和三维涂层的非彩虹色结构颜色

阅读:10
作者:Dongpeng Yang, Wenjie Luo, Yidong Huang, Shaoming Huang

Abstract

Amorphous photonic structures (APSs) with short-range ordered arrangement have attracted great interest because of their wide view angles. However, the presented methods for the APSs color printing and 3D coating on different substrates and curvatures are lack of control. Here, APSs with angle-independent structural colors were fabricated by the self-assembly of SiO2@Fe3O4 core-shell nanostructures, which were prepared by the hydrolysis of Fe(acac)3 on the silica surfaces. The size of SiO2@Fe3O4 core-shell colloids can be controlled well through the tuning of SiO2 particle size, whereas the coverage of Fe3O4 on silica surfaces can be precisely tailored through altering the mass ratio between Fe3O4 precursor and SiO2. APSs with only short-range ordered structures, uniform noniridescent structural colors, and high color visibility can be obtained through the self-assembly of SiO2@Fe3O4 colloids of different particle sizes in a few minutes. They are mainly attributed to the weak electrostatic repulsion interactions between SiO2@Fe3O4 colloids because of the partial coverage of Fe3O4 on silica surfaces and absorption of the incoherent multiple scattering of visible light from Fe3O4. Moreover, SiO2@Fe3O4 colloids show good adhesion to various substrates, such as paper, glass, plastics, resins, ceramics, and wood, which facilitates the formation of uniform APSs on different substrates. Multicolor prints and 3D coating of APSs on substrates with different curves and roughness can be realized on the basis of the fast assembly of SiO2@Fe3O4 colloids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。