Palindrome-Embedded Hairpin Structure and Its Target-Catalyzed Padlock Cyclization for Label-Free MicroRNA-Initiated Rolling Circle Amplification

回文嵌入发夹结构及其靶向催化的挂锁环化用于无标记microRNA 启动的滚环扩增

阅读:5
作者:Huaiwen Zeng, Hongyin Zhou, Junliang Lin, Qi Pang, Siqiang Chen, Shaoqi Lin, Chang Xue, Zhifa Shen

Abstract

Highly sensitive detection of microRNAs (miRNAs) is of great significance in early diagnosis of cancers. Here, we develop a palindrome-embedded hairpin structure and its target-catalyzed padlock cyclization for rolling circle amplification, named PHP-RCA for simplicity, which can be applied in label-free ultrasensitive detection of miRNA. PHP-RCA is a facile system that consists of only an oligonucleotide probe with a palindrome-embedded hairpin structure (PHP). The two ends of PHP were extended as overhangs and designed with the complementary sequences of the target. Hence, the phosphorylated PHP can be cyclized by T4 DNA ligase in the presence of the target that serves as the ligation template. This ligation has formed a palindrome-embedded dumbbell-shaped probe (PDP) that allows phi29 polymerase to perform a typical target-primed RCA on PDP by taking miRNA as a primer, resulting in the production of a lengthy tandem repeat. Benefits from the palindromic sequences and hairpin-shaped structure in padlock double-stranded structures can be infinitely produced during the RCA reaction and provide numerous binding sites for SYBR Green I, a double-stranded dye, achieving a sharp response signal for label-free target detection. We have demonstrated that the proposed system exhibits a good linear range from 0.1 fM to 5 nM with a low detection limit of 0.1 fM, and the non-target miRNA can be clearly distinguished. The advantages of high efficiency, label-free signaling, and the use of only one oligonucleotide component make the PHP-RCA suitable for ultrasensitive, economic, and convenient detection of target miRNAs. This simple and powerful system is expected to provide a promising platform for tumor diagnosis, prognosis, and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。