High-content, label-free analysis of proplatelet production from megakaryocytes

对巨核细胞产生的原血小板进行高内涵、无标记分析

阅读:6
作者:Shauna L French, Prakrith Vijey, Kyle W Karhohs, Adrian R Wilkie, Lillian J Horin, Anjana Ray, Benjamin Posorske, Anne E Carpenter, Kellie R Machlus, Joseph E Italiano Jr

Background

The mechanisms that regulate platelet biogenesis remain unclear; factors that trigger megakaryocytes (MKs) to initiate platelet production are poorly understood. Platelet formation begins with proplatelets, which are cellular extensions originating from the MK cell body. Objectives: Proplatelet formation is an asynchronous and dynamic process that poses unique challenges for researchers to accurately capture and analyze. We have designed an open-source, high-content, high-throughput, label-free analysis platform.

Conclusion

This advance in creating unbiased data analysis will increase the scale and scope of proplatelet production studies and potentially serve as a valuable resource for investigating molecular mechanisms of thrombocytopenia.

Methods

Phase-contrast images of live, primary MKs are captured over a 24-hour period. Pixel-based machine-learning classification done by ilastik generates probability maps of key cellular features (circular MKs and branching proplatelets), which are processed by a customized CellProfiler pipeline to identify and filter structures of interest based on morphology. A subsequent reinforcement classification, by CellProfiler Analyst, improves the detection of cellular structures.

Results

This workflow yields the percent of proplatelet production, area, count of proplatelets and MKs, and other statistics including skeletonization information for measuring proplatelet branching and length. We propose using a combination of these analyzed metrics, in particular the area measurements of MKs and proplatelets, when assessing in vitro proplatelet production. Accuracy was validated against manually counted images and an existing algorithm. We then used the new platform to test compounds known to cause thrombocytopenia, including bromodomain inhibitors, and uncovered previously unrecognized effects of drugs on proplatelet formation, thus demonstrating the utility of our analysis platform.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。