Effect of Sulfate-Based Scales on Calcite Mineral Surface Chemistry: Insights from Zeta-Potential Experiments and Their Implications on Wettability

硫酸盐基垢对方解石矿物表面化学的影响:从 Zeta 电位实验获得的见解及其对润湿性的影响

阅读:7
作者:Isah Mohammed, Abubakar Isah, Dhafer Al Shehri, Mohamed Mahmoud, Muhammad Arif, Muhammad Shahzad Kamal, Olalekan Saheed Alade, Shirish Patil

Abstract

Scale formation and deposition in the subsurface and surface facilities have been recognized as a major cause of flow assurance issues in the oil and gas industry. Sulfate-based scales such as sulfates of calcium (anhydrite and gypsum) and barium (barite) are some of the commonly encountered scales during hydrocarbon production operations. Oilfield scales are a well-known flow assurance problem, which occurs mainly due to the mixing of incompatible brines. Researchers have largely focused on the rocks' petrophysical property modifications (permeability and porosity damage) caused by scale precipitation and deposition. Little or no attention has been paid to their influence on the surface charge and wettability of calcite minerals. Thus, this study investigates the effect of anhydrite and barite scales' presence on the calcite mineral surface charge and their propensity to alter the wetting state of calcite minerals. This was achieved vis-à-vis zeta-potential (ζ-potential) measurement. Furthermore, two modes of the scale control (slug and continuous injections) using ethylenediaminetetraacetic acid (EDTA) were examined to determine the optimal control strategy as well as the optimal inhibitor dosage. Results showed that the presence of anhydrite and barite scales in a calcite reservoir affects the colloidal stability of the system, thus posing a threat of precipitation, which would result in permeability and porosity damage. Also, the calcite mineral surface charge is affected by the presence of calcium and barium sulfate scales; however, the magnitude of change in the surface charge via ζ-potential measurement is insignificant to cause wettability alteration by the mineral scales. Slug and continuous injections of EDTA were implemented, with the optimal scale control strategy being the continuous injection of EDTA solutions. The optimal dosage of EDTA for anhydrite scale control is 5 and 1 wt % for the formation water and seawater environments, respectively. In the case of barite, in both environments, an EDTA dosage of 1 wt % suffices. Findings from this study not only further the understanding of the scale effects on calcite mineral systems but also provide critical insights into the potential of scale formation and their mechanisms of interactions for better injection planning and the development of a scale control strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。