Parallel clustering of single cell transcriptomic data with split-merge sampling on Dirichlet process mixtures

在狄利克雷过程混合物上使用分裂合并采样对单细胞转录组数据进行并行聚类

阅读:5
作者:Tiehang Duan, José P Pinto, Xiaohui Xie

Results

We propose to tackle these challenges with Parallelized Split Merge Sampling on Dirichlet Process Mixture Model (the Para-DPMM model). Unlike classic DPMM methods that perform sampling on each single data point, the split merge mechanism samples on the cluster level, which significantly improves convergence and optimality of the result. The model is highly parallelized and can utilize the computing power of high performance computing (HPC) clusters, enabling massive inference on huge datasets. Experiment results show the model outperforms current widely used models in both clustering quality and computational speed. Availability and implementation: Source code is publicly available on https://github.com/tiehangd/Para_DPMM/tree/master/Para_DPMM_package.

Supplementary Information

Supplementary data are available at Bioinformatics online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。