Young rat microbiota extracts strongly inhibit fibrillation of α-synuclein and protect neuroblastoma cells and zebrafish against α-synuclein toxicity

幼鼠微生物提取物可强烈抑制 α-突触核蛋白的纤维化,并保护神经母细胞瘤细胞和斑马鱼免受 α-突触核蛋白的毒性

阅读:15
作者:Mohaddeseh Ghorbani Shiraz, Janni Nielsen, Jeremias Widmann, Ka Hang Karen Chung, Thomas Paul Davis, Casper Rasmussen, Carsten Scavenius, Jan J Enghild, Camille Martin-Gallausiaux, Yogesh Singh, Ibrahim Javed, Daniel E Otzen

Abstract

The clinical manifestations of Parkinson's disease (PD) are driven by aggregation of α-Synuclein (α-Syn) in the brain. However, there is increasing evidence that PD may be initiated in the gut and thence spread to the brain, eg, via the vagus nerve. Many studies link PD to changes in the gut microbiome, and bacterial amyloid has been shown to stimulate α-Syn aggregation. Yet, we are not aware of any studies reporting on a direct connection between microbiome components and α-Syn aggregation. Here, we report that soluble extract from the gut microbiome of the rats, particularly young rats transgenic for PD, shows a remarkably strong ability to inhibit in vitro α-Syn aggregation and keep it natively unfolded and monomeric. The active component(s) are heat-labile molecule(s) of around 30- to 100-kDa size, which are neither nucleic acid nor lipid. Proteomic analysis identified several proteins whose concentrations in different rat samples correlated with the samples' anti-inhibitory activity, while a subsequent pull-down assay linked the protein chaperone DnaK with the inhibitory activity of young rat's microbiome, confirmed in subsequent in vitro assays. Remarkably, the microbiome extracts also protected neuroblastoma SH-SY5Y cells and zebrafish embryos against α-Syn toxicity. Our study sheds new light on the gut microbiome as a potential source of protection against PD and opens up for new microbiome-based therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。