Cocaine-induced plasticity in the nucleus accumbens is cell specific and develops without prolonged withdrawal

可卡因引起的伏隔核可塑性是细胞特异性的,无需长期戒断即可发展

阅读:8
作者:Alice Dobi, Gail K Seabold, Christine H Christensen, Roland Bock, Veronica A Alvarez

Abstract

Cocaine induces plasticity at glutamatergic synapses in the nucleus accumbens (NAc). Withdrawal was suggested to play an important role in the development of this plasticity by studies showing that some changes only appear several weeks after the final cocaine exposure. In this study, the requirement for prolonged withdrawal was evaluated by comparing the changes in glutamatergic transmission induced by two different noncontingent cocaine treatments: a short treatment followed by prolonged withdrawal, and a longer treatment without prolonged withdrawal. Recordings were performed from mouse medium spiny neurons (MSNs) in the NAc at the same time after the first cocaine injection under both treatments. A similar increase in the frequency of glutamate-mediated miniature EPSCs was observed in D(1)-expressing MSNs after both cocaine treatments, demonstrating that prolonged withdrawal was not required. Furthermore, larger AMPA receptor-to-NMDA receptor ratios, higher spine density, and enlarged spine heads were observed in the absence of withdrawal after a long cocaine treatment. These synaptic adaptations expressed in D(1)-containing MSNs of the NAc core were not further enhanced by protracted withdrawal. In conclusion, a few repeated cocaine injections are enough to trigger adaptations at glutamatergic synapses in D(1)-expressing MSNs, which, although they take time to develop, do not require prolonged cocaine withdrawal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。