Sorption of Carbon Dioxide and Nitrogen on Porous Hyper-Cross-Linked Aromatic Polymers: Effect of Textural Properties, Composition, and Electrostatic Interactions

二氧化碳和氮气在多孔高交联芳香族聚合物上的吸附:纹理特性、成分和静电相互作用的影响

阅读:5
作者:Noufal Merukan Chola, Prayag Gajera, Harshal Kulkarni, Gaurav Kumar, Rahulbhai Parmar, Rajaram K Nagarale, Govind Sethia

Abstract

Porous hyper-cross-linked aromatic polymers are one of the emerging classes of porous organic polymers with the potential for industrial application. Four different porous polymeric materials have been prepared using different precursors (indole, pyrene, carbazole, and naphthalene), and the composition and textural properties were analyzed. The materials were characterized in detail using different physicochemical techniques like scanning electron microscopy, transmission electron microscopy, nitrogen adsorption at 77 K, Fourier transform infrared spectroscopy, X-ray diffraction, etc. The effect of textural properties and nitrogen species on carbon dioxide and nitrogen adsorption capacities and selectivity was studied and discussed. The carbon dioxide and nitrogen adsorption capacities were measured using a volumetric gas adsorption system. The adsorption data were fitted into different adsorption models, and the ideal absorbed solution theory was used to calculate adsorption selectivity. Among the studied samples, POP-4 shows the highest carbon dioxide and nitrogen adsorption capacities. While POP-1 shows maximum CO2/N2 selectivity of 78.0 at 298 K and 1 bar pressure. It is observed that ultra-micropores, which are present in the prepared materials but not measured during conventional surface area measurement via nitrogen adsorption at 77 K, play a very important role in carbon dioxide adsorption capacity and determining the carbon dioxide selectivity over nitrogen. Surface nitrogen also increases the CO2 selectivity in the dual mode by increasing carbon dioxide adsorption via the acid-base interaction as well as by decreasing nitrogen adsorption due to N-N repulsion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。