Antileishmanial potentials of azacitidine and along with meglumine antimoniate on Leishmania major: In silico prediction and in vitro analysis

阿扎胞苷和葡甲胺锑酸盐对利什曼原虫的抗利什曼原虫潜力:计算机预测和体外分析

阅读:6
作者:Ali Derakhshani, Iraj Sharifi, Ehsan Salarkia, Alireza Keyhani, Setareh Agha Kuchak Afshari, Behzad Iranmanesh, Mahdieh Lashkarizadeh, Hamid Nejad Biglari, Moslem Lari Najafi, Mehdi Bamorovat

Abstract

This study aimed to investigate the in vitro and in silico antileishmanial activity of azacitidine (AZA) on Leishmania major promastigotes and amastigotes. The in silico method was used to evaluate the possibility of the interaction of AZA into the binding pocket of inducible nitric oxide synthase (iNOS), a leading defensive oxidative metabolite. Following that, in vitro anti-promastigote, and anti-amastigote activity of AZA was determined using an MTT assay and a macrophage model, respectively. Cytotoxic effects of AZA and meglumine antimoniate (MA) were also assessed by MTT assay on murine macrophages. All experiments were performed in triplicate. The results showed that AZA interacted with Ser133, Gln134, and Lys13 amino acids of iNOS, and the molecular docking score was obtained at -241.053 kcal/mol. AZA in combination with MA significantly (P<0.001) inhibited the growth rate of nonclinical promastigote (IC50 247.6±7.3 μM) and 8.5-fold higher of clinical intramacrophage amastigote stage (29.8±5.3 μM), compared to the untreated group. A significant upsurge of Th1 subsets and transcription genes and a meaningful decline in Th2 cytokines subclasses at the equivalent concentrations of AZA and MA was observed (P<0.001). The apoptosis effect of AZA along with MA was significantly induced on L. major in a dose-dependent manner (P<0.001). The present study demonstrated that AZA possesses antileishmanial activity in in vitro and in silico models. However, AZA combined with MA was more effective than AZA alone in inhibiting the growth rate of promastigotes and amastigotes of L. major. This study indicates that AZA in combination with MA demonstrated a potent antileishmanial mechanism, promoting immune response and enhancing an immunomodulatory role toward the Th1 pathway. This experimental study is a basic study for applying more knowledge about the mechanisms of AZA along with MA in animal models in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。