Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

干涉表面等离子体共振生物传感的等离子体传播距离

阅读:9
作者:Dominic Lepage, Dominic Carrier, Alvaro Jiménez, Jacques Beauvais, Jan J Dubowski

Abstract

A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。