demuxmix: demultiplexing oligonucleotide-barcoded single-cell RNA sequencing data with regression mixture models

demuxmix:利用回归混合模型对寡核苷酸条形码标记的单细胞RNA测序数据进行解复用

阅读:2
作者:Hans-Ulrich Klein

Abstract

Motivation: Droplet-based single-cell RNA sequencing (scRNA-seq) is widely used in biomedical research for interrogating the transcriptomes of single cells on a large scale. Pooling and processing cells from different samples together can reduce costs and batch effects. To pool cells, they are often first labeled with hashtag oligonucleotides (HTOs). These HTOs are sequenced alongside the cells' RNA in the droplets and subsequently used to computationally assign each droplet to its sample of origin, a process referred to as demultiplexing. Accurate demultiplexing is crucial but can be challenging due to background HTOs, low-quality cells/cell debris, and multiplets. Results: A new demultiplexing method based on negative binomial regression mixture models is introduced. The method, called demuxmix, implements two significant improvements. First, demuxmix's probabilistic classification framework provides error probabilities for droplet assignments that can be used to discard uncertain droplets and inform about the quality of the HTO data and the success of the demultiplexing process. Second, demuxmix utilizes the positive association between detected genes in the RNA library and HTO counts to explain parts of the variance in the HTO data resulting in improved droplet assignments. The improved performance of demuxmix compared with existing demultiplexing methods is assessed using real and simulated data. Finally, the feasibility of accurately demultiplexing experimental designs where non-labeled cells are pooled with labeled cells is demonstrated. Availability and implementation: R/Bioconductor package demuxmix (https://doi.org/doi:10.18129/B9.bioc.demuxmix).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。