Marburg Virus VP30 Is Required for Transcription Initiation at the Glycoprotein Gene

马尔堡病毒 VP30 是糖蛋白基因转录起始所必需的

阅读:10
作者:Megan R Edwards, Olivia A Vogel, Hiroyuki Mori, Robert A Davey, Christopher F Basler

Abstract

Marburg virus (MARV) is an enveloped, negative-sense RNA virus from the filovirus family that causes outbreaks of severe, frequently fatal illness in humans. Of the seven MARV proteins, the VP30 protein stands out because it is essential for viral growth but lacks a definitive function. Here, we used model MARV genome RNAs for one or two reporter genes and the MARV VP40, glycoprotein (GP), and VP24 genes to demonstrate that VP30 is dispensable for the transcription of some genes but critical for transcription reinitiation at the GP gene. This results in the loss of the expression of GP and downstream genes and the impaired production of infectious particles when VP30 is absent. Bicistronic minigenome assays demonstrate that the VP40 gene end/GP gene start junction specifically confers VP30 dependence. A region at the GP gene start site predicted to form a stem-loop contributes to VP30 dependence because the replacement of the GP stem-loop with corresponding sequences from the MARV VP35 gene relieves VP30 dependence. Finally, a Cys3-His zinc binding motif characteristic of filovirus VP30 proteins was demonstrated to be critical for reinitiation at GP. These findings address a long-standing gap in our understanding of MARV biology by defining a critical role for VP30 in MARV transcription. IMPORTANCE Marburg virus and Ebola virus encode VP30 proteins. While the role of VP30 in Ebola virus transcription has been well studied, the role of VP30 in the Marburg virus life cycle is not well understood. The work here demonstrates that different gene start sites within the Marburg viral genome have variable levels of dependence on Marburg virus VP30, with its expression being critical for transcription reinitiation at the GP gene start site. These findings address a long-standing question regarding Marburg virus VP30 function and further our understanding of how Marburg virus gene expression is regulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。